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Introduction  
MULTIMEDIA contents are growing explosively 
and the need for multimedia retrieval is occurring 
more and more frequently in our daily life. Due to the 
complexity of multimedia contents, image 
understanding is a difficult but interesting issue in 
this field. Extracting valuable knowledge from a 
large-scale multimedia repository, so
multimedia mining, has been recently studied by 
some researchers. Typically, in the development of 
an image requisition system, semantic image retrieval 
relies heavily on the related captions, e.g., file
categories, annotated keywords, and other manual 
descriptions. Unfortunately, this kind of textual
image retrieval always suffers from two problems: 
high-priced manual annotation and inappropriate 
automated annotation. On one hand, high
manual annotation cost is prohibitive in coping with a 
large-scale data set.   
 
As a result, a number of powerful image retrieval 
algorithms have been proposed to deal with such 
problems over the past few years. Content
Image Retrieval (CBIR) is the mainstay of current 
image retrieval systems. In general, the purpose of 
CBIR is to present an image conceptually, with a set 
of low-level visual features such as color, texture, 
and shape. These conventional approaches for i
retrieval are based on the computation of the 
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disease is described. This system enables both multi image query and slide level image retrieval in 
order to protect the semantic consistency among the retrieved images. To improve the performance, the proposed 

score normalization and non- negative matrix factorization (Sub-space projection) methods. It 
achieves high accuracy and reduces the processing time greatly. It provides better performance for all type of images 
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As a result, a number of powerful image retrieval 
algorithms have been proposed to deal with such 
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similarity between the user’s query and images via a 
query by example (QBE) system [21]. Content
image retrieval (CBIR) systems [2]
images are important to deliver a stable platform
catalog, search, and retrieve images based on their 
content. 
 
Although several CBIR projects exist for radiology 
[8]–[10] and several other projects are underway, 
there is an acute need for a comprehensive and 
flexible CBIR system for microscopic image
direct implications for the field of pathology and 
cancer research. Microscopic images present novel 
challenges because they 1) are large in size 2) 
demonstrate high degree of visual variation due to 
large variation in preparation (e.g., staining, 
thickness), and 3) show huge biological variation. 
Therefore, a well-designed CBIR system for 
microscopic images can be extremely useful resource 
for cancer research, diagnosis, prognosis, treatment, 
and teaching. In other words, such a system can 1) 
assist pathologists in their diagnosis and prognosis, 2) 
potentially help to reduce inter
variability in clinical practice for the diseases, 
especially those with complicated classification, 3) 
help cancer researchers in better understanding of
cancer development, treatment monitoring, and 
clinical trials, and 4) train future generation of 
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researchers by providing consistent, relevant and 
always available support and assistance. In this paper, 
we describe the design and the development of a 
multi-tiered CBIR system for microscopic images 
from a reference database that contains more than 
one disease. 
 
To provide a motivating example and to test the ideas 
developed in this paper, images in our reference 
database include sample regions cropped from 
digitized hematoxylin and eosin (H&E) stained 
whole slides. Neuroblastoma (NB) and follicular 
lymphoma (FL) tissue images have been collected as 
part of our ongoing projects for both diseases. FL 
cases are stratified to three histological grades from 
low- to high-risk category as follows: Grade I, Grade 
II, and Grade III. According to the International 
Neuroblastoma Classification System, NB tissues are 
mainly divided into two subtypes such as stroma rich 
(SR) or stroma poor (SP) based on the degree of 
Schwannian stroma development [13]. Additionally, 
SP tissue has three subtypes such as undifferentiated 
(UD), poorly differentiated (PD), and differentiating 
(D).  
 
Annotation of microscopic images, e.g., H&E-stained 
pathology slides, with subtypes of the main disease 
needs an expert pathologist to select pathology-
bearing regions or regions of interests from the whole 
slide. Then each selected region is annotated 
semantically by giving a score according to its visual 
qualitative characteristics. The final decision on the 
grade or subtype of the disease for the whole slide is 
given after considering the annotations of all sample 
regions, i.e., the average subtype-related score over 
all sample regions is assigned as the final score of 
that whole slide. Considering the extremely large 
sizes of microscopic images, it is obvious that manual 
annotation of these images is a time-consuming 
process and those annotated images may not be easily 
available for clinical use. Therefore, one of the aims 
of this study is to organize the annotated microscopic 
images in a database and utilize these images for the 
training of a CBIR system for microscopic images 
with different disease types and with their subtypes. 
 
The novel aspects of our multi-tiered approach are: 1) 
it retrieves the most similar disease types in the slide 
level rather than in the image level by enabling multi-
image queries in order to ensure the consistency 
among the retrieved images, and 2) slide-level scores 
are weighted in a sophisticated way by modifying the 
term frequency (tf) – inverse document frequency 
(idf) weighting concepts of information retrieval (IR) 
theory [14] to decrease the sensitivity of the proposed 
CBIR system to erroneously annotated sample 

images in the database. Since in real medical 
applications, especially for microscopic images at 
high magnifications, the query object is more likely 
to be a set of sample images extracted from a whole-
slide image rather than being a single image, the 
multi-image query model suits perfectly for our case. 
It has been also proved that query by multi-images 
leads to more scalable and satisfactory query 
performances by overcoming the limitation on the 
specification of image content of single-image 
queries [15], [16]. 
 
In CBIR systems, images are typically represented 
with feature vectors extracted using low-level image 
processing techniques [8], [9], [17]. However, 
similarities in feature vector level do not always 
guarantee the semantic similarity (i.e., interpretations 
of images according to their predefined categories) 
between query image and retrieved images. This is 
known as the semantic gap problem [18], [19]. In this 
paper, we will explore the effect of slide-level 
retrieval system with multiple query images in order 
to increase the semantic relevance of query image set 
and retrieved images. 
 
A general flowchart of the proposed CBIR system is 
illustrated in Fig. 1. It shows the main steps of the 
CBIR algorithm, e.g., feature extraction, major 
disease-type classification (first tier), image retrieval 
according to the subtypes of the diseases (second 
tier). 
 

 
Figure 1: General flowchart for the CBIR system for a 

given query image or images. 
 

Related Work 
Most of the commercial search engines (e.g., Google, 
Yahoo!, Bing Image Search) are built around a 
semantic search, i.e., the user needs to type in a series 
of keywords and the images in those databases are 
also annotated using keywords; the match is 
accomplished primarily through these keywords. 
CBIR systems have been developed in the recent 
years to organize and utilize the valuable image 
sources effectively and efficiently for diverse 
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collections of images. Most of the recent CBIR 
systems in biomedicine [5], [8], [9], are designed to 
classify and retrieve images according to the 
anatomical categories of their content, i.e., head or 
chest X-ray images or abdominal CT images. For 
example, the Automatic Search and Selection Engine 
with Retrieval Tools (ASSERT) system [5] was 
designed for high-resolution CT images of the lung, 
where each set of feature was extracted from the 
pathology-bearing regions. Previously, a prefiltering 
approach [9] was proposed to reduce the search space 
of query images by categorizing the images using 
multiclass support vector machines (SVMs) and 
fuzzy c-mean clustering. The retrieval after 
prefiltering was done according to main disease 
categories only, which is similar to the first tier of our 
two-tiered approach. 
 
In another study [20], expectation-maximization 
algorithm was used to generate clusters of block-
based low-level features extracted from radiographic 
images. Then, the similarity between two clusters 
was estimated as a function of the similarity of both 
their structures and the measure components. 
Pourghassem and Ghassemian [21] proposed a two-
level hierarchical medical image classification 
method. The first level was used to classify the 
images into the merged and nonmerged classes. They 
tested their algorithm on medical X-ray images of 40 
classes. Although this is a two-level hierarchical 
classification, it is different from our approach 
because only the merged classes were evaluated in 
the second level to be classified with multilayer 
perceptron (MLP) classifiers into 1 of 40 classes. 
 
Traditional indexing and search strategies used in 
radiological systems are not directly applicable in the 
context of digital microscopy since it is not obvious 
how to define a primary key or major anatomical 
structure for such images. To complicate things 
further, most known structures (e.g., cells, its 
components, tissue, etc.) are much more complex and 
require more detailed analysis than that would be 
needed at the higher resolutions and scale of 
radiological images. The feature extraction from 
microscopic images is also challenging because these 
images are composed of varying textures, 
overlapping structures, and different cell constituents 
even for the same disease types. 
In the last decade, a few CBIR systems for the 
microscopic images have been developed for clinical 
use [6], [7], [17], [22], [23]. Mehta et al. designed a 
region-specific retrieval system based on sub-image 
query search on whole-slide images by extracting 
scale invariant features on the detected points of 
interests and 80% of match was achieved with the 

manual search for prostate H&E images [23] in the 
top five searches. Zheng et al. [6] proposed a CBIR 
system based on the weighted similarities of four 
feature types such as color histogram, image texture, 
Fourier coefficients, and wavelet coefficients. The 
retrieval performance of their system was tested 
using agglomerative cluster analysis for different 
pathology image categories and the best retrieval 
performance was observed for prostate query images. 
 
Recently, Yang et al. [7] developed a Web-based 
system called PathMiner, which includes automatic 
segmentation, CBIR, and classification modules to 
assist diagnostics in pathology. They evaluated the 
classification performance of their system on five 
different blood cells such as chronic lymphocytic 
leukemia, mantle cell lymphoma, follicular center 
cell lymphoma, and acute lymphocytic leukemia and 
acute myelogenous leukemia by using SVM 
classifiers with texton histogram features and 87.27% 
of classification accuracy was achieved on an open 
set with large variations in staining characters. 

 
Most of the CBIR approaches designed for 
microscopic images have their own specific 
application area, specific feature extraction 
technique, or a specific similarity measure for the 
evaluation. For example, disease-specific CBIR 
systems [17], [22], [23] have been developed for 
clinical decision support of specific diseases, while 
some of the CBIR systems were designed for the 
classification of different types of pathology images, 
i.e., liver tissue, prostate tissue, breast tissue, lymph 
node, and so on [6]. 

 
Although many promising CBIR approaches were 
developed for medical applications, there are still 
gaps in terms of image content, retrieval 
methodology, performance evaluations, and their 
application areas [18], [19], which make this research 
area an open problem for further studies. Particularly, 
the majority of the retrieval methodology of the 
published CBIR techniques focused on image-level 
retrieval either by choosing or defining an 
appropriate distance metric to compare the feature 
vectors from the query and database images [8], [17], 
[24]. However, multi-image query based retrieval is 
more suitable for challenging medical CBIR 
applications. Especially, microscopic images at high 
magnifications require multi-image queries in order 
to specify the query images more efficiently. 
Therefore, our CBIR method will focus on defining a 
retrieval methodology for multi-image queries, which 
can be also applicable for any type of multi-image 
query and retrieval application. 
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In summary, our approach focuses on one modality, 
which is the digital bright field microscopic image of 
tissue slides. It does not aim to provide a way to 
search and index generic medical image collections. 
It differs from the existing microscopic CBIR 
methods mainly in two aspects. First, two different 
diseases (FL and NB) are processed within a CBIR 
system with their highlevel semantic annotations. The 
framework can also be extended to several other 
diseases. Second, our approach enables multi-image 
queries instead of one image query and provides a 
slidelevel retrieval by keeping the slide-level 
consistency among retrieved images by using 
weighting scores depending on the image-level rank 
order and distributions of the subtypes over the 
reference dataset. 
 
Proposed Approach  
Feature Extraction 
In this section, we will explain the feature extraction 
techniques that we employed to the images in our 
database. 

• Low-Level Feature Extraction 
There are many factors affecting the performance and 
accuracy of CBIR systems, such as choosing more 
discriminative features, similarity measurement 
criteria, query formulation, and so on. In order to 
design an effective CBIR system, the initial step in 
our study is to extract discriminative features from 
the images in the reference database. These features 
will also be calculated for query images. One of the 
most discriminating characteristics of microscopic 
images is color, especially when compared to most 
common radiological images, which are mostly gray 
level. Due to the high resolution of microscopic 
images, subtle changes in characteristics of cells, 
combinations of cells, structures, and tissues can also 
be differentiated from each other by texture 
characteristics. Therefore, for our CBIR design, we 
heavily make use of color and texture characteristics 
and extract these features using low-level image 
feature extraction techniques. 
1) Color features: H&E images have considerably 
limited color spectrum, i.e., there are few dominant 
colors (hues of blue and pink), as shown on the 
sample images. Therefore, in order to better represent 
the limited color information in more detail, we used 
two more color spaces in addition to red–green–blue 
(RGB) color space. These additional color spaces are 
CIELab (Lab) and Modifed hue–saturation–value 
(MHSV) color spaces. In the Lab color space, L 
corresponds to illumination, and a and b channels 
correspond to color opponents. Thus, features 
extracted from the Lab space characterize the 
intensity and color information of images separately 
[25]. On the other hand, the HSV color space is 

known with similarity to the human conceptual 
understanding of colors. Besides this, HSV space can 
separate the chromatic and achromatic components, 
i.e., hue (H) channel distinguishes colors, saturation 
channel (S) represents the percentage of white light 
added to a pure color space, and value (V) refers to 
intensity of perceived light [25]. For each channel of 
a given color space, mean value and standard 
deviation are computed as first- and second-order 
statistics features. In total, 18 (2 features × 3 
channels × 3 color spaces) color features are 
extracted from each image. Additionally, mean value, 
standard deviation, skewness, kurtosis, maximum and 
minimum values, energy, and entropy values are 
computed for gray-level intensity image. In 
summary, 26 color and gray-scale features are 
extracted using three different color spaces for a 
given image. 
2) Texture features: Microscopic images with 
different disease types and subtypes can be 
distinguished via their homogeneity or texture 
characteristics. To capture the discriminative texture 
information, we investigated several texture feature 
extraction methods in the literature 
[26]. Co-occurrence histograms are the most 
frequently used method for texture feature extraction 
[4]. They can be defined as a sample of a joint 
probability density of intensity levels of two pixels 
separated by a given displacement. The distribution 
in the histograms depends on the rotation angle and 
distance relationship between pixels. Once the co-
occurrence histogram is computed, various features 
can be extracted related to texture characteristics, 
lower and higher order statistics, information-theory-
related features, and correlation measure. As a 
consequence, we extracted the following features: 
mean, standard deviation, contrast, correlation, 
energy, entropy, and homogeneity from the 
normalized co-occurrence histograms for each RGB 
and Lab color channels and gray-level images. In 
addition, mean value, homogeneity, and entropy 
values are extracted from the difference histograms 
of the normalized co-occurrence matrix. For a given 
image, a total of 80 texture-based features are 
extracted using RGB, MHSV color spaces, and gray-
level intensities. It should be noted that average of 
the co-occurrence histograms for eight different 
directions, i.e., 0◦,±45◦,±90◦,±135◦, 180◦, are 
calculated in order to obtain rotation invariant 
features. It should be noted that the images are at the 
same magnification level; therefore, no scaling of the 
features is needed. 

• Feature Vector Representation 
Once all color and texture features are extracted, they 
are concatenated to form a 106-dimensional feature 
vector. After feature extraction, a Z-score 
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normalization is applied to each extracted feature in 
the feature vector by subtracting the mean of that 
feature followed by dividing to the standard deviation 
of that feature computed over the reference dataset. 
This normalization step converts all extracted 
features to a common scale with an average of zero 
and standard deviation of one. Then normalized 
feature vectors (NF) are stored for further CBIR 
processes. For each query image set, the system will 
employ the same feature extraction and normalization 
procedure to the query images. 
Instead of analyzing the contribution of extracted 
features based on selected color spaces or texture 
features by using feature selection algorithms, we 
preferred to use subspace projection method in order 
to represent the feature vectors more sparsely by 
decreasing the correlation among the features. In the 
literature, subspace projection methods have been 
widely used for dimensionality reduction and feature 
extraction. They are popular to analyze structures 
where large amount of correlated numerical data is 
available. Nonnegative matrix factorization (NMF) 
[32] is one of the data-driven subspace projection 
methods, which aims to factorize a data matrix into 
basis vectors and their combiner coefficients. They 
perform better for features extracted from partially 
represented data [33]. In our case, features from 
different color spaces and texture features can be 
assumed to be features of a partially represented data. 
Using a training dataset, FDS with size lxT, the m 
basis vectors, columns of W, are obtained as follows: 

FDS ≈ WH      
where l is the length of the feature vector, T is the 
number of samples in the dataset, and m (m < l) is the 
size of NMF features. In the factorization in (1), the 
columns of the lxm matrix W stand for the basis 
vectors and the columns of the mxT matrix H 
determine how the basis vectors are activated to 
reconstruct the feature matrix FDS. The columns of 
H represent the NMF-based feature vectors of the 
corresponding data. The classification of a test 
feature vector FQ is based on its NMF features given 
by h = W+FQ. The number of columns m in the 
(basis) matrix W was determined for each disease 
type empirically during training stage. 

• Two Tier Approach for Multi-image 
queries 

Our CBIR system operates at two tiers. In the first 
tier, the designed classifier categorizes the query 
image/images into one of the major disease types 
such as FL and NB. Once the disease category of the 
image is determined, the search for the query image 
can be carried out among the category relevant 
subtypes in the subsequent tier. For example, when 
the query image belongs to NB disease, database 
images in the first tier will be filtered according to 

the NB disease category. Then the subsequent search 
will be only performed on the NB category subset to 
retrieve the images from the correct category of the 
query images. 
In the second tier, we will use our proposed multi-
image query and retrieval methodology to retrieve the 
images from the reference database in the order of 
their image-level visual similarities by preserving the 
slide-level semantic similarity. 
A. First Tier: Classification of Disease Type with 
SVM 
An SVM-type classifier was employed to categorize 
the query image into one of the major disease type 
such as NB or FL using the extracted features. SVM 
classifiers are well founded in statistical learning 
theory and have been successfully used for various 
classification tasks in computer vision. Their purpose 
is to find a decision hyperplane for a binary 
classification problem by maximizing the margin, 
which is the distance between the hyperplane and the 
closest data points of each class in the training set 
that are called support vectors. The hyperplane is 
chosen among all the possible hyperplanes through a 
complex combinatorial problem optimization so that 
it maximizes the distance (called the margin) between 
each class and the hyperplane itself. As SVMs are 
restricted to binary classification, several strategies 
are developed to adapt them for multiclass 
classification problems such as one-against-all 
classification and pair-wise classification. 
B. Second Tier: Slide-Level Image Retrieval 
In this part of the CBIR algorithm, we proposed a 
two-level retrieval system; in the first level, the 
search is performed similar to traditional CBIR 
systems such that the images are retrieved based on 
their image-level similarities. In the second level, the 
images will be retrieved according to their 
similarities in the slide level. Once the category of 
the query image is detected in the first tier, further 
search is performed on the pre-filtered database, 
which includes only the sample images of the 
detected disease category. As we described in Section 
V-A, each disease has higher level semantic 
annotations based on their histological grades such as 
Grade-I, Grade-II, and Grade-III in FL disease or D 
levels such as SR, UD, PD, and D in NB disease. 
Therefore, it is necessary to retrieve images related to 
their higher level semantic characteristics in order to 
provide more accurate results to the user of the CBIR 
system. Algorithm 1 summarizes the image-level 
search and Fig. 2 illustrates a sample nearest-
neighbor search scheme for a given query mage set in 
imagelevel. 
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Fig 2: Sample image-level nearest neighbor search 
scheme for a given query image set. 

 
Here we used the term of image set in order to 
represent multiple images in one query. Note that 
image set may include only one image or several 
images cropped from one tissue slide. The distance 
between each image of query Q and the individual 
images in the dataset are computed using the 
correlation distance measure, as shown in the 
following: 

 
where N is the number of individual query entities in 
the given query image set Q, T is the number of 
images in the reference dataset DS, and FQn 
represents the feature vector of the nth query image, 
FDSt represents the feature vector of the tth image of 
the given dataset, and | · | is the cardinality. 
Algorithm 1 provides us the frequency of similar 
images per image in the dataset to a given query 
image set or a slide in terms of scores. Scores are 

computed by summing the number of occurrences of 
each image in the dataset for a k-nearest neighbor 
(KNN) search of that query image set. The output of 
this algorithm is the traditional image-level-based 
retrieving of most similar images from the given 
dataset and their image-level scores. 

 
In our alternative approach to image-level retrieval, 
we propose to retrieve similar images from the 
database by keeping the slide-level semantic grade 
among the retrieved images. For this purpose, we 
introduced a slide-level retrieval methodology, which 
is summarized in Algorithm 2.  
 
In our proposed approach, the first step is to scale the 
score of each slide by assigning different weight 
parameters based on subtype frequencies over the 
reference database. Therefore, our algorithm assigns 
higher weights to the slides of FL Grade-I since its 
frequency is lower than FL Grade III. Similarly, the 
number of images per slide is varying among the 
slides. In order to make a comprehensive and 
intelligent relevance ranking system, it is necessary 
to take into account those statistical variations among 
slides and subtypes. Assigning weights to each slide 
and to each subtype based on the distribution (or 
frequency) of images per slide and distribution of 
slides per subtype is motivated by similar approaches 
in IR theory. In information theory, “tf” refers to the 
frequency of an index term in a reference document 
and “idf” is inversely proportional to the number of 
documents containing that index term and they are 
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used to assign weights for each term of the 
documents before computing similarity. 
 
However, in our case, we do not have definite terms 
(i.e. words in documents), but we have scores 
representing the unweighted similarities between the 
query image set and the reference slides. Therefore, 
we adapted these concepts to assign weights to 
normalize the similarity scores of each slide and each 
subtype depending on the slide- and image-level 
statistics of the dataset (e.g., the number of images 
per slide or the number of slides per subtype). In our 
slide-level retrieval system, we redefined scores in 
terms of image term frequency (itf ), which 
corresponds to normalized number of image count of 
a particular slide for a given query set. 
Additionally, inverse slide frequency (isf) is inversely 
proportional to the number of slides per subtype, and 
it gives lower weights to the slides occurring in a 
larger set of subtype. 
 
Algorithm2 summarizes the proposed weighting 
score approach. We assigned a weighting term, called 
Rank weight, to each subtype. First, Score itf values 
were sorted in descending order and top K2 of the 
sorted scores are summed according to their 
subtypes. These summed scores represent the Rank 
weight term for each subtype. Basically, Rank weight 
term corresponds to the proportion of summed itf 
scores within the top K2 itf scores per subtype. The 
purpose of Rank weight is to increase the likelihood 
of retrieving the subtype of the highest scored slides 
by assigning higher weights to the slide scores of that 
subtype 

 

Fig. 3. Computational model representing the 
transition from image-level scores to slide-level 
retrieval, where i = image number, c = subtype 
number, and s = slide number. Here, the query Q is 
an image set with 20 images belonging to subtype 1. 
Image-level scores, slide-level scores, Score itf , 
Rank weight, relevancy rank of slides with weighted 
scores are computed, respectively, for the given 
sample query. 
 
Experimental Results 
Annotated Microscopic Image Dataset 
The number of cropped images per slide is between 
11 and 30 for FL cases and between 7 and 35 for NB 
cases. For FL slides, a team of experienced hemato-
pathologists selected about 10 random microscopic 
high power fields (HPF) to interpret the disease grade 
in terms of the average number of centroblasts per 
HPF. Note that, for both FL and NB, we use 
internationally accepted and clinically practiced 
standards. For FL, our collaborating pathologists use 
the World Health Organization grading system. The 
consensus of pathologists is used to stratify cases into 
their histological grades. The sizes of the cropped 
images are 1353 × 2168 pixels for FL cases and 1024 
× 1024 and 1712 × 952 pixels and for NB cases. 

 
For NB slides, pathologists pick the representative 
regions (images) from the whole slide and examine 
those regions at higher magnifications. The final 
decision for the differentiation grade of the entire 
slide is based on the grades of the sample images 
selected from that slide. Due to this differentiation 
grades, NB disease is differentiated to two 
subcategories such as SR and SP. SP subtype has 
three more subtypes such as D, PD, and UD. In total, 
NB disease has four subtypes. Fig. 5 illustrates 
sample images cropped from different slides with 
different differentiation grades of NB to give an idea 
about their visual appearances. 
Because of the heterogeneous characteristic of these 
tumors, all image-level annotations may not match 
with the annotation of the entire slide, which causes 
intraslide variations. Additionally, there may be 
variations among inter-and intrareadings of 
pathologists because of which FL Grade-I and FL 
Grade-II subtypes and NB-PD and NB-UD subtypes 
[26],  are the most confused subtypes of the FL and 
NB diseases, respectively. 
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Results of the First Tier 
The organization of the test set and training set is 
performed in patient (slide) independent manner. In 
other words, none of the images of a test slide is 
included in the training set in order to obtain more 
realistic results both in the first -and second-tier 
experiments. 
In the experiments of the first-tier evaluation, we 
randomly selected five FL and five NB slides for 
each test set and the remaining slides were used for 
the training of the SVM classifier. In total, 10 slides 
were randomly chosen for the test set and 91 slides 
were used for training. In order to comprehensively 
test and train all NB and FL sample slides with 
different test sets, we repeated the testing scheme 
until all the slides were used as a test slide, an 
approach similar to the leave-one-out testing. 
These results were obtained with SVM classifiers 
trained with normalized features. The classification 
accuracies were evaluated in two different ways. One 
way is to evaluate the results at the image level such 
that each image is classified independent from the 
other images of that test slide. The other way is to 
interpret the results at the slide level by combining 
the decisions on all images of a test slide using 
decision fusion rules. Here, the majority rule is 
employed to the assigned classes of the test images to 
determine the slide-level classification of that image 
set. In other words, the majority of the assigned 
classes for each test image are chosen as the 
representative class for that given slide. It is noticed 
that all images of that NB slide were also 
misclassified at the image level. This misclassified 
NB slide was used with both NB and FL slides in 
order to evaluate the retrieval accuracy in the second 
tier of the algorithm in case of a misclassified slide. 
 
Results of the Second Tier 
After determining the classes of query slides in the 
first tier, the next step is to retrieve the most relevant 
images from the database according to the main 
disease type of the query image set. Leave-one-slide-
out cross-validation testing scheme was employed for 
each disease type separately such that at each round 
one tissue slide with all corresponding images was 
used as a query image set and the images of the 
remaining slides were used as the reference dataset 
for that query. 

 

 
Fig 4: Second-tier experimental scheme. 

 
The organization of the performed experiments for 
the second tier is shown in Fig. 4. For the slide-level 
retrieval, we used the proposed weighted scores to 
rank the slides according to their relevancy to a given 
query slide. In order to assess the performance of 
Rank weight on the retrieval system, we evaluated the 
experiments both with (slide-level II) and without 
(slide-level I) using this weighting term. 
 

 
Fig. 5. Comparison of average precision values for slide-
level II and image-level retrieval algorithms for FL and 

NB diseases. (a) FL disease. (b)NB disease. 
  
Conclusion 
In this paper, we have presented a novel content-
based microscopic image/slide retrieval algorithm. 
We have demonstrated that by using the proposed 
weighting scheme inspired by IR theory, the slide-
level retrieval performance of the CBIR system is 
considerably better than the traditional image-level 
retrieval accuracy for all seven subtypes of two 
challenging diseases, which have inter- and 
intrareading semantic variations, intraslide semantic 
variations, and intersubtype visual similarities. In the 
first tier, only one slide among 44 NB slides is 
misclassified, and in the second tier, about 26 
percentage points of improvement was achieved on 
the classification accuracy at the first rank retrieval 
over all diseases by using the proposed score 
weighting strategy. This CBIR system can enable the 
user, e.g., a pathologist, to select multiple HPF 
regions from a suspected tissue and submit those 
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images as a query to the CBIR system and retrieve 
the most relevant slides with their semantic 
annotations with higher accuracies. The results, 
achieved under those challenging conditions, are also 
promising for automatic and unsupervised selected 
query images based on their HPF regions. 
Application of the proposed weighting strategy, 
inspired by the IR theory, is not limited to 
microscopic images only, and can be also useful for 
any type of multiquery search and content-based 
retrieval systems. 
 
In our future work, we will 1) investigate more 
effective texture and color feature extraction 
methods, 2) improve the robustness of the system by 
increasing the number of patients/slides in the 
database, 3) enhance the diversity of the database by 
including microscopic images from different disease 
types, 4) evaluate the performance of the system on 
automatically selected HPF regions for the query, and 
finally 5) develop a multipurpose Web-based tool for 
training future generations of researchers by 
providing consistent, relevant, and always available 
support and assistance for the challenging diseases, 
and finally help cancer researchers in better 
understanding of cancer development, treatment 
monitoring, and clinical trials. 
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